000 01071nam a22001817a 4500
003 OSt
005 20250624095155.0
008 250624b |||||||| |||| 00| 0 eng d
020 _a9781138583405
082 _a006.31
_bMAR
100 _aMarsland, Stephen
245 _aMachine Learning : An Algorithmic Prespective
250 _a2nd
260 _aNew York
_bCRC Press
_c2025
300 _axx, 437p.
_c24 x 18 cm
520 _a1. Introduction 2. Preliminaries 3. Neurons, Neural Networks, and Linear Discriminants 4. The Multi-Layer Perceptron 5. Radial Basis Functions and Splines 6. Dimensionality Reduction 7. Probabilistic Learning 8. Support Vector Machines 9. Optimization and Search 10. Evolutionary Learning 11. Reinforcement Learning 12. Learning with Trees 13. Decision by Committee: Ensemble Learning 14. Unsupervised Learning 15. Markov Chain Monte Carlo (MCMC) Methods 16. Graphical Models 17. Symmetric Weights and Deep Belief Networks 18. Gaussian Processes
942 _2ddc
_cREF
999 _c6421
_d6421