000 01104nam a22001697a 4500
003 OSt
005 20250624095344.0
008 250624b |||||||| |||| 00| 0 eng d
020 _a9781032708119
082 _a006.31
_bSUG
100 _aSugiyama, Masashi
245 _aStatistical Reinforcement Learning : Modern Machine Learning Approaches
260 _aNew York
_bCRC Press
_c2024
300 _axiv, 192p.
_c23 x 15 cm
520 _aI. Introduction 1. Introduction to Reinforcement Learning II. Model-Free Policy Iteration 2. Policy Iteration with Value Function Approximation 3. Basis Design for Value Function Approximation 4. Sample Reuse in Policy Iteration 5. Active Learning in Policy Iteration 6. Robust Policy Iteration III. Model-Free Policy Search 7. Direct Policy Search by Gradient Ascent 8. Direct Policy Search by Expectation-Maximization 9. Policy-Prior Search IV. Model-Based Reinforcement Learning 10. Transition Model Estimation Dimensionality Reduction for Transition Model Estimation
942 _2ddc
_cREF
999 _c6420
_d6420