000 01292nam a22001817a 4500
003 OSt
005 20250606165437.0
008 250606b |||||||| |||| 00| 0 eng d
020 _a9789389588507
082 _a006.31
_bKEL
100 _aKelleher, Andrew
245 _aMachine Learning in Production
260 _aNoida
_bPearson
_c2025
300 _axxiv, 229p.
_c24 x 18 cm
520 _ahapter 1: The Role of the Data Scientist Chapter 2: Project Workflow Chapter 3: Quantifying Error Chapter 4: Data Encoding and Preprocessing Chapter 5: Hypothesis Testing Chapter 6: Data Visualization Part II: Algorithms and Architectures Chapter 7: Introduction to Algorithms and Architectures Chapter 8: Comparison Chapter 9: Regression Chapter 10: Classification and Clustering Chapter 11: Bayesian Networks Chapter 12: Dimensional Reduction and Latent Variable Models Chapter 13: Causal Inference Chapter 14: Advanced Machine Learning Part III: Bottlenecks and Optimizations Chapter 15: Hardware Fundamentals Chapter 16: Software Fundamentals Chapter 17: Software Architecture Chapter 18: The CAP Theorem Chapter 19: Logical Network Topological Node
700 _aKelleher, Adam
942 _2ddc
_cREF
999 _c6418
_d6418