| 000 | 01192nam a22001817a 4500 | ||
|---|---|---|---|
| 003 | OSt | ||
| 005 | 20250528153955.0 | ||
| 008 | 250528b |||||||| |||| 00| 0 eng d | ||
| 020 | _a9789355515636 | ||
| 082 |
_a006.31 _bBHA |
||
| 100 | _aBhasin, Harsh | ||
| 245 | _aMachine Learning for Beginners | ||
| 250 | _a2nd | ||
| 260 |
_aNew Delhi _bBPB _c2025 |
||
| 300 |
_axxiii, 360p. _c24 x 18 cm |
||
| 520 | _aSection I: Fundamentals 1. An Introduction to Machine Learning 2. The Beginning: Data Pre-Processing 3. Feature Selection 4. Feature Extraction 5. Model Development Section II: Supervised Learning 6. Regression 7. K-Nearest Neighbors 8. Classification: Logistic Regression and Naïve Bayes Classifier 9. Neural Network I: The Perceptron 10. Neural Network II: The Multi-Layer Perceptron 11. Support Vector Machines 12. Decision Trees 13. An Introduction to Ensemble Learning Section III: Unsupervised Learning and Deep Learning 14. Clustering 15. Deep Learning Appendix 1: Glossary Appendix 2: Methods/Techniques Appendix 3: Important Metrics and Formulas Appendix 4: Visualization- Matplotlib Answers to Multiple Choice Questions Bibliography | ||
| 942 |
_2ddc _cREF |
||
| 999 |
_c6366 _d6366 |
||