000 01192nam a22001817a 4500
003 OSt
005 20250528153955.0
008 250528b |||||||| |||| 00| 0 eng d
020 _a9789355515636
082 _a006.31
_bBHA
100 _aBhasin, Harsh
245 _aMachine Learning for Beginners
250 _a2nd
260 _aNew Delhi
_bBPB
_c2025
300 _axxiii, 360p.
_c24 x 18 cm
520 _aSection I: Fundamentals 1. An Introduction to Machine Learning 2. The Beginning: Data Pre-Processing 3. Feature Selection 4. Feature Extraction 5. Model Development Section II: Supervised Learning 6. Regression 7. K-Nearest Neighbors 8. Classification: Logistic Regression and Naïve Bayes Classifier 9. Neural Network I: The Perceptron 10. Neural Network II: The Multi-Layer Perceptron 11. Support Vector Machines 12. Decision Trees 13. An Introduction to Ensemble Learning Section III: Unsupervised Learning and Deep Learning 14. Clustering 15. Deep Learning Appendix 1: Glossary Appendix 2: Methods/Techniques Appendix 3: Important Metrics and Formulas Appendix 4: Visualization- Matplotlib Answers to Multiple Choice Questions Bibliography
942 _2ddc
_cREF
999 _c6366
_d6366