Statistical Reinforcement Learning : Modern Machine Learning Approaches
Sugiyama, Masashi
Statistical Reinforcement Learning : Modern Machine Learning Approaches - New York CRC Press 2024 - xiv, 192p. 23 x 15 cm
I. Introduction
1. Introduction to Reinforcement Learning
II. Model-Free Policy Iteration
2. Policy Iteration with Value Function Approximation
3. Basis Design for Value Function Approximation
4. Sample Reuse in Policy Iteration
5. Active Learning in Policy Iteration
6. Robust Policy Iteration
III. Model-Free Policy Search
7. Direct Policy Search by Gradient Ascent
8. Direct Policy Search by Expectation-Maximization
9. Policy-Prior Search
IV. Model-Based Reinforcement Learning
10. Transition Model Estimation
Dimensionality Reduction for Transition Model Estimation
9781032708119
006.31 / SUG
Statistical Reinforcement Learning : Modern Machine Learning Approaches - New York CRC Press 2024 - xiv, 192p. 23 x 15 cm
I. Introduction
1. Introduction to Reinforcement Learning
II. Model-Free Policy Iteration
2. Policy Iteration with Value Function Approximation
3. Basis Design for Value Function Approximation
4. Sample Reuse in Policy Iteration
5. Active Learning in Policy Iteration
6. Robust Policy Iteration
III. Model-Free Policy Search
7. Direct Policy Search by Gradient Ascent
8. Direct Policy Search by Expectation-Maximization
9. Policy-Prior Search
IV. Model-Based Reinforcement Learning
10. Transition Model Estimation
Dimensionality Reduction for Transition Model Estimation
9781032708119
006.31 / SUG
